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Thermodynamics of fluid turbulence: A unified approach to the maximum transport properties
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Dissipative properties of various kinds of turbulent phenomena are investigated. Two expressions are derived
for the rate of entropy increase due to thermal and viscous dissipation by turbulence, and for the rate of entropy
increase in the surrounding system; both rates must be equal when the fluid system is in a steady state.
Possibility is shown with these expressions that the steady-state properties of several different types of turbu-
lent phenomena~Bénard-type thermal convection, turbulent shear flow, and the general circulation of the
atmosphere and ocean! exhibit a unique state in which the rate of entropy increase in the surrounding system
by the turbulent dissipation is at a maximum. The result suggests that the turbulent fluid system tends to be in
a steady state with a distribution of eddies that produce the maximum rate of entropy increase in the nonequi-
librium surroundings.
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I. INTRODUCTION

Turbulence seems to be one of the most frequent phen
ena around us: thunderstorms in the atmosphere, turbu
eddies in the ocean, convection of a hot liquid in a cof
cup, shear turbulence of the liquid by forced mixing, etc. Y
there is no physical theory that is capable of expressing
complete dynamic structure of turbulence@1#. Understanding
turbulence may be important because all living creatu
including human beings, are exposed to the turbulent mo
of the atmosphere and ocean since the early beginning.
though the local turbulent motion is highly complex, it
hoped that the statistical-mean properties may have s
general characteristics to be discovered. In this respect,
a statistical law of turbulence has been sought by number
investigators in various fields of physical sciences.

In the field of fluid dynamics, several suggestions ha
been made on maximum transport properties of turbule
on the basis of phenomenological observations. For ther
convection of a fluid layer heated from below~i.e., Bénard
convection @2#!, Malkus @3# suggested that the observe
mean state represents a state in which the rate of heat t
port by thermal convection is at a possible maximumF
5Max.). For turbulent flow of a fluid layer under a pu
shear, Malkus@4# and Busse@5# suggested that the realize
state corresponds to a state with the maximum rate of
mentum transport (t5Max.). Their approach is now calle
the ‘‘optimum theory’’ or ‘‘upper bound theory,’’ and is wel
known in the field@6–9#. However, the physical meaning o
the maximized properties is yet to be determined.

A similar suggestion has been proposed in the field
earth science. Paltridge@10,11#, for instance, suggested th
the present mean state of the global atmosphere is repro
ible as a state with a maximum rate of entropy increase
to heat transport by the general circulation of the atmosph
and ocean. Figure 1 shows such an example@10#. Without
considering the detailed dynamics of the system, the p
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dicted distributions~i.e., temperature, cloud amount, an
horizontal heat flux! show considerably good agreement wi
observations. Later on, several researchers investigated
work, and obtained essentially the same result@12,13#. Al-
though criticisms arose from a consideration of radiation
tropy @14#, it is recently shown that Paltridge’s work remain
valid if the rate of entropy increase by the turbulent he
transport is considered to be a maximum@15–17#. Thus, the
global fluid system~the atmosphere and ocean! seems to be
in a state with the maximum rate of entropy increase by
turbulent process (Ṡturb5Max.), although the reason remain
unclear. Moreover, until now, we do not have a reasona
explanation why the specific quantity~F, t, or Ṡturb! tends to
be maximized in each of these turbulent systems.

In order to clarify the issue in the above mentioned ph
nomena, we have investigated the dissipative propertie
turbulence. In this paper, we shall not go into the details
the mathematical problems of the optimum theory; these
the subject of other considerations@5–9,18–21#. Instead, we
shall present a simple thermodynamical proposition
which these apparently different types of turbulent pheno
ena ~e.g., Bénard thermal convection, turbulent shear flo
and the general circulation of the global fluid system! can
possibly be explained. The proposition states that a turbu
fluid system tends to be in a steady state with a maxim
rate of entropy increase in the surrounding system by
turbulent dissipation in the fluid system. In what follows, w
shall present a set of equations to express the rate of ent
increase in a fluid system and its surroundings~Sec. II!. With
these equations, we shall see how these apparently disp
turbulent phenomena can be explained by this simple pro
sition ~Sec. III!. Physical meaning of the proposition wi
shortly be discussed in Sec. IV.

II. ENTROPY INCREASE BY TURBULENT DISSIPATION

Let us consider the rate of entropy increase per unit ti
for a whole system consisting of a fluid system and its s
rounding system with which the fluid system exchanges h
and momentum~Fig. 2!. The rate of entropy increase due
©2001 The American Physical Society03-1
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FIG. 1. Global distributions of:
~a! mean air temperature,~b!
cloud cover, and~c! horizontal
heat transport in the earth. Soli

line: predicted withṠturb,st5Max.
and dashed line: observed~after
Paltridge@10#!.
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some irreversible processes in the fluid system is then g
by the sum of the contributions from each system@see Ap-
pendix Eq.~A7! as well as Ref.@17## as

Ṡturb5E 1

T F]~rcT!

]t
1“"~rcTv!1p“"vGdV1E F

T
dA,

~1!

wherer is the density of the fluid,c is the specific heat a
constant volume,T is the absolute temperature,v is the ve-
locity, p is the pressure,V is the volume of the fluid system
A is the surface bounding the system from the surroundin
andF is the diabatic heat flux due to turbulence at the bou
ary, defined as positive outwards. The first volume integ
represents the entropy increase rate of the fluid system,
the second surface integral represents that of the surroun
system. If the concerned fluid system is in a steady state
statistical sense, as usually the case of laboratory exp
ments, then the entropy, a state function of the fluid syst
remains unchanged. In this case, Eq.~1! becomes simply

Ṡturb,st5E F

T
dA, ~2!

where the suffix st denotes that the fluid system is in a ste
state. This equation suggests that the entropy produce
some irreversible processes in the turbulent fluid system
completely discharged into the surrounding system thro
the boundary heat fluxF, so long as the fluid system is in

FIG. 2. A schematic representation of an open fluid system
its surrounding system with which the fluid system exchange heF
and momentumt.
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steady state. The entropy of the surrounding system is t
increasing by the irreversible processes in the fluid syste1

Previous studies@10–13,15–17# suggest that the increas
rate by the turbulent dissipation processes tends to b
maximum (Ṡturb,st5Max.) when the long-term mean state
the global fluid system is concerned~see Fig. 1 and Sec
III C !.

The general expression, Eq.~1!, can be rewritten in a
different form. It is known@22,23#, and easy to show@Ap-
pendix Eq.~A10!, @17## that

Ṡturb5E F"“S 1

TDdV1E F

T
dV, ~3!

whereF is the diabatic heat flux density due to turbulen
and F is the dissipation function, representing the rate
dissipation of kinetic energy into heat by viscosity per u
volume of the fluid. The first term is the rate of entrop
increase by thermal dissipation, and the second term is
by viscous dissipation. The sum of the two terms represe
the total rate of entropy increase by the turbulent dissipat
In a steady state, the entropy produced by the turbulent
sipation in the fluid system@Eq. ~3!# is completely dis-
charged into the surrounding system through the bound
heat flux@Eq. ~2!#. If we assume, by analogy with the case
the global fluid system, that the turbulent fluid system ten
to maximize the rate of entropy increase in the surround
system by the turbulent dissipation, then we will get a prop
sition written in the following two different expressions:

Ṡturb,st5E F"“S 1

TDdV1E F

T
dV ~4a!

5E F

T
dA5Maximum. ~4b!

By using these two expressions@Eqs. 4~a! and 4~b!#, it is
possible to show that several maximum transport proper
so far suggested for different types of turbulent phenom
can be explained with this proposition. For instance,

1In this respect, the surrounding system isnot in a steady state
even though the fluid system is in a steady state~cf. @17#!.
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THERMODYNAMICS OF FLUID TURBULENCE: A . . . PHYSICAL REVIEW E64 026303
maximum heat transport suggested for thermal convec
@3# is consistent with Eq.~4b! to be a maximum. The maxi
mum momentum transport (t5Max.) suggested for turbu
lent shear flow@4,5# corresponds to the maximum she
working on the system, which results in the maximum v
cous dissipation (F5Max.) in Eq. ~4a!. The maximum en-
tropy increase suggested for the global fluid system@10–
13,15–17# is identical to this proposition. In what follows
we shall discuss a few more details about these phenom
with respect to their specific boundary conditions.

III. MAXIMUM TRANSPORT PROPERTIES
OF TURBULENCE

A. Thermal convection

Let us consider thermal convection of a fluid layer whi
is in contact with two thermal reservoirs with different tem
peratures; a hot reservoir (Th) at the bottom, and a cold
reservoir (Tc) at the top@Fig. 3~a!#. When the temperature
differenceDT5Th2Tc becomes larger than a critical valu
determined by the Rayleigh number, the convective mot
will start and develop@2,24#. If the fluid system can be con
sidered to be in a statistically steady state, then the entr
of the system remains constant. In this case, the rate of
tropy increase due to thermal convection is given by tha
the surrounding system@Eq. ~4b!#. The proposition of the
maximum rate of entropy increase is then given by

Ṡturb,st5E F

T
dA5

F

Tc
2

F

Th
5

DTF

ThTc
5Max. ~5!

Equation ~5! shows that, provided that the boundary te
peratures are kept constant, the proposition is identical to
maximum heat transport (F5Max.) suggested by Malkus
@3#.

As a simplest case, let us follow the boundary layer
proach originated by Malkus@3#. Malkus suggested that th
maximumF is attained by the largest temperature gradien
the thermal boundary layer (d t) adjacent to the boundary

FIG. 3. Schematic illustrations of:~a! thermal convection and
~b! turbulent shear flow.
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where heat is mainly transported by thermal conduction.
the contrary, in the interior between the boundary layers,
convective heat transport by macroscopic eddies is so
cient that the temperature gradient in the interior is virtua
negligible @Fig. 3~a!#. In this case, the maximum heat tran
port will be attained by the largest temperature gradien
the boundary layer with its minimum thickness (d t,min)

Fmax5k
DT/2

d t,min
, ~6!

wherek is the thermal conductivity. The minimum thicknes
d t,min may be given by the stability criterion of Rayleig
~i.e., the threshold of a layer thickness above which conv
tion would start@24#! as

Ra* 5
gaDT~2d t,min!

3

kn
, ~7!

where Ra* is the critical Rayleigh number~;1700!, g is the
acceleration of gravity, anda, k, andn are the coefficients of
volume expansion, thermal diffusivity, and kinematic visco
ity, respectively. By substituting Eq.~7! in Eq. ~6! and elimi-
natingd t,min , one gets

Fmax5
kDT

d S Ra

Ra* D 1/3

, ~8!

where Ra[gaDTd3(kn)21 is the Rayleigh number for the
entire fluid layer~thicknessd!. It should be noted that Eq.~8!
gives an upper bound for the heat transport that the boun
layer permits, in the sense that no dynamic constraint
been taken into account for the heat transport in the inter

FIG. 4. Relation between the Nusselt number Nu and the R
leigh number Ra. Solid lineM: maximum estimate with Eq.~8! and
shaded region: experimental results@7,25#. Dotted line shows recen
experimental result@26#.
3-3
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The maximum heat flux~line M! estimated by Eq.~8! and
experimental results~shaded region! are shown in Fig. 4. The
vertical axis is the dimensionless heat flux, the Nusselt nu
ber: Nu[F(kDT/d)21, and the horizontal axis is the Ray
leigh number, shown on a log-log plot. The experimen
results are plotted from Refs.@7,25#, and the result from
recent experiment@26# is also shown by dotted line. Th
critical Rayleigh number is set to be Ra* 51708@25#. A rea-
sonable agreement can be seen between the estimate a
experiments, despite of some discrepancy about the cri
point (Ra'Ra* ). A slight overestimation of Eq.~8! can also
be seen at large Rayleigh numbers; the scaling exponen
Eq. ~8! is 1/3'0.33, whereas that from the experiment@26#
is 0.31. As mentioned above, the boundary layer appro
gives an upper bound estimate for the heat flux without
dynamic constraint in the interior. Thus it may become
valid at the large Ra numbers@27–29#. The estimate can, in
principle, be improved by adding additional possible co
straints. For instance, Castinget al. @28# assumed a mixing
zone adjacent to the boundary layer, and obtained a sca
exponent of 2/7'0.29, while other attempts@19,27# sug-
gested 0.5. Although the exact value of the scaling expon
is still debatable@26#, the underlying conjecture on the max
mum heat flux, and therefore on the maximum entropy
crease, seems to be not unreasonable. In addition, re
from recent numerical experiments of thermal convection
a rotating fluid system show that the system tends to sele
regime with a higher rate of entropy increase@30#. These
results suggest that a convective system tends to maxim
the rate of entropy increase in the surrounding system@Eq.
~4b!#. The maximum heat flux hitherto suggested for therm
convection can therefore be interpreted as a manifestatio
Eq. ~4! under the fixed temperature condition at the bou
ary.

B. Turbulent shear flow

Let us next consider turbulent shear flow of a fluid lay
in contact with two reservoirs with different velocities; th
relative velocity of the upper reservoir to the lower reserv
is DU @Fig. 3~b!#. When the relative velocity is larger than
certain critical value determined by the Reynolds numb
the turbulent motion will start to develop@31#. In this case,
the kinetic energy of the upper reservoir is transported i
the fluid layer through the shear working at the upper bou
ary, and this energy is dissipated into heat by molecular
fusion in the fluid layer. In a steady state, the rate of visc
dissipation~viscous heating! must be balanced by the rate
working due to the shear stresst times the relative velocity
DU. The proposition of the maximum rate of entropy i
crease by the turbulent dissipation is then given by Eq.~4a!
as

Ṡturb,st5E F

T
dV'

F t

T
5

DUt

T
5Max., ~9!

whereF t5*FdV is the total rate of viscous dissipation p
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unit surface of the fluid layer.2 Equation~9! shows that, pro-
vided that the relative velocity is kept constant, the propo
tion is identical to the maximum shear stress~or, equiva-
lently, maximum momentum transport! suggested by Malkus
@4# and Busse@5#.

As before, the maximum shear stress~or the maximum
momentum transport! will be attained by the maximum ve
locity gradient at the viscous boundary layer adjacent to
boundary, whose minimum thicknessdv,min will be given by
the stability criterion of Reynolds. In the interior between t
boundary layers, the momentum transport by the turbu
eddies is so efficient that the velocity gradient may be vir
ally negligible @Fig. 3~b!#. With these assumptions justified
one will get

tmax5m
DU/2

dv,min
5r

DU2

Re*
5

mDU

d

Re

Re*
, ~10!

wherem5rn is the viscosity,r is the density, Re[dDU/n is
the Reynolds number for the entire fluid layer, and R*
52dv,minDU/n is the critical Reynolds number; above th
threshold turbulence would occur@31#. Equation ~10! has
some important implications for the nature of homogene
turbulence. For instance, a well-known empirical form of t
surface drag stress is shown in Eq.~10! as tmax5CDrDU2,
whereCD51/Re* is thedrag coefficient, empirically ranging
from 0.001 to 0.01@32#. A mean dissipation rate per un
mass of the fluid layer can be given bye5F t /(rd)
5tmaxDU/(rd)5CDDU3/d; this shows a quantitative form o
the Kolmogorov–Obukhov relation@22#. Further approach
from Eq. ~10! to a homogeneous turbulence theory is the
fore promising, and will be dealt with in a separate pape

The maximum shear stress~line M! estimated with Eq.
~10! and experimental results~dots! are shown in Fig. 5. The
vertical axis is a dimensionless shear stress,G
[t(mDU/d)21, and the horizontal axis is the Reynold
number, shown on a log-log plot. The experimental resu
are plotted from Reichardt@33#, and the critical Reynolds
number is set to be Re*'500 in reference to the experimen
Results from the Couette–Taylor flow experiment@34# are
also shown with a dotted line, for a comparison. The agr
ment is again reasonable, despite some overestimatio
large Reynolds numbers; the scaling exponent of Eq.~10! is
1, whereas that of Reichardt’s experiment@33# is around 0.9.
In the case of the Couette–Taylor experiment, the sca
exponent increases from 0.6 to 0.8 with increasing Re fr
104 to 106 @34#, suggesting that it asymptotically approach
1 or 0.9@18#. As before, Eq.~10! gives just an upper bound
estimate for the momentum transport without any dynam
constraint in the interior. The estimate can thus be impro
by taking into account additional constraints@9,21#. For ex-

2In this estimate, temperature is assumed to be almost uniform
the fluid layer. In a real steady state, the amount of viscous hea
must be discharged into the surrounding system by thermal con
tion through the boundary:F t5*FdA. Thus, the expression Eq
~4b! is also valid in this case. But, it is impractical to estimateF by
the small temperature gradient at the boundary.
3-4
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ample, a rigorous analysis based on the dynamic equat
and the continuity equation@5,6# suggests a velocity profile
that is in qualitative agreement with the observed veloc
profile @33#, as shown in Fig. 3~b! with the asterisk. More
detailed work is needed to improve the upper bound e
mates for the momentum transport@20#. Here, it should be
noted that the general agreements between the estimate
the experiments tend to support the proposition that the r
ized turbulent flow maximizes the shear stress, and there
the rate of entropy increase@Eq. ~4a!#, under the fixed rela-
tive velocity condition at the boundary.

C. General circulation of the global fluid

The global fluid system of the earth~the atmosphere an
ocean! is different from the convection system of a Be´nard
type, in the sense that the temperature difference at
boundary is not fixed but is a function of the heat transp
itself. As a simplest case, let us consider the earth compo
of two regions~the equator and pole!; the average tempera
ture in the equatorial region isTe and that in the polar region
is Tp @Fig. 6~a!#. In the present state, there is a net input
radiation ~shortwave absorption–longwave emission! in the
equatorial region, and a net output from the polar region.
a long-term mean state~steady state!, this energy imbalance
is compensated by energy transportF due to the direct mo-
tion of the atmosphere and ocean, called general circula
Suppose an extreme case with no circulation~i.e., static
state! with negligible amount of heat transport (F'0).
Then, the equatorial region will be heated up, and the p
regions will be cooled down. Because of the Stefa
Boltzmann law of radiation, this results in an increase
thermal emission from the equatorial region and a decre
from the polar region, thereby compensating the energy
balance in each region. Thus, in the static state, the temp

FIG. 5. Relation between the nondimensional shear stresG
[t(mDU/d)21, and the Reynolds number Re. Solid lineM: maxi-
mum estimate with Eq.~10! and dots: laboratory experiment@33#.
Dotted line shows results from Couette–Taylor experiment@34# for
reference.
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ture difference will be the largest@Fig. 6~b!#. With increasing
F from zero, the temperature difference will decrease.
very largeF with extreme mixing, the temperature differenc
will become negligible. Thus, the temperature differen
DT(F)5Te2Tp is a monotonic decreasing function ofF
@Fig. 6~b!#.

The rate of entropy increase by the heat transportF due to
the general circulation is, provided that the fluid system is
a statistically steady state, given by the rate in the surrou
ing system@Eq. ~4b!#. Then, the proposition is

Ṡturb,st5
F

Tp
2

F

Te
5

DT~F !F

TeTp
5Max. ~11!

It should be noted that, unlike Eq.~5!, the temperature dif-
ferenceDT(F) is not fixed but a decreasing function ofF.
SinceṠturb,st is proportional to the product ofF andDT(F),
it should have a maximum between the two extreme ca
F50 ~no circulation! and DT(F)50 ~extreme mixing!, as
shown by the solid circle in Fig. 6~b!. According to the
proposition, this maximum corresponds to the most appro
ate state for the general circulation. A number of attem
have been made to seek such a maximum in a more rea
system of the earth composed of 10–20 zones with differ
latitude and altitude@10–13,15#. Maxima were found in all
these attempts, and the corresponding distributions of t
peratures and heat fluxes show considerable agreements
the observations~see Fig. 1 as well as@10–13,15#!. Thus, the
general circulation seems to be regulated in a state with
appropriate rate of heat transport in the atmosphere a
ocean, that produces the maximum rate of entropy incre

FIG. 6. ~a! Schematic illustration of the earth consisting of tw
regions: equator and pole.F represents the horizontal heat transp
by the circulation of the atmosphere and ocean.~b! Corresponding
entropy increase rate in the surrounding system due to the
transport, as a function ofF. A maximum exists between the tw
extreme states:F50 ~no circulation! andDT(F)50 ~extreme mix-
ing!.
3-5
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in the surrounding system. This result shows a sharp con
to the maximum heat transport found in Be´nard-type thermal
convection or the maximum momentum transport in turb
lent shear flow. However, all these examples are comple
in agreement with the proposition of the maximum entro
increase@Eq. ~4!# presented here.

IV. DISCUSSION

We have seen in the preceding sections that the ste
state properties of several different types of turbulent p
nomena ~e.g., Bénard-type thermal convection, turbule
shear flow, and the general circulation of the global fluid! can
be explained to a certain extent by a unique state of Eq.~4!,
i.e., a state with a maximum rate of entropy increases in
surrounding system by the turbulent dissipation in the fl
system. The appearance of the maximum transport prope
of heat or momentum hitherto suggested for different tur
lent systems is thereby interpreted as a manifestation of
same state of Eq.~4! under their specific boundary cond
tions. Equation~4! may thus be seen as a general thermo
namical tendency of various kinds of fluid turbulence, whi
can be added to a list of such important properties of tur
lence as diffusivity, vorticity fluctuations, and dissipatio
~e.g.,@35#!. We do not in any way intend to say that our wo
is complete. More detailed work is needed in both fiel
maximum transport theories of turbulence and maximum
tropy output from the earth. However, the possible linkage
those apparently disparate turbulent phenomena sugges
existence of a basic law, which may also be of interes
scientists in various fields.

The idea that a turbulent fluid system~with large Ra or
large Re! tends to produce a higher rate of dissipation is
very new. Almost a century ago, Terada and Hattori@36#
carried out a series of careful experiments on turbulent m
tion of fluids, and pointed out that ‘‘the liquid has ahabit of
breaking up into a number of vortical portions~turbulent
eddies!, and such mode of motion is preferred by nature
the simpler laminar motion with less dissipation.’’ Fe´lici @37#
and Sawada@38# suggested that a convective system tend
select a regime of convection with a maximum rate of e
tropy increase due to the convective current. The former s
gestion is related to the tendency of increased viscous d
pation rate~F!, while the latter is related to the increase
tendency of the convective current~F!. These suggestion
can also be incorporated into the single proposition of Eq.~4!
presented here. Although the concept of the entropy incre
similar to Eq.~4! has been hinted at already, to the best
our knowledge, an explicit statement of the proposition
lating the maximum transport properties found both in
laboratory and the global fluid system to the state of ma
mum entropy increase has not been made before.

Finally, we shall discuss the reason why the turbul
fluid systems tend to maximize the rate of entropy incre
in the surrounding system. A surrounding system consis
of reservoirs with a large difference in temperature or vel
ity is in a nonequilibrium state. If a small fluid system~size
d! is in contact with such reservoirs, the corresponding R
leigh or Reynolds number can be very large~Ra@Ra* or
02630
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Re@Re* !. Then, the fluid system tends to reduce the no
equilibrium state by heat or momentum transport through
system, resulting in the entropy increase in the surround
system. But, if the fluid system would contain no turbule
eddy at all~i.e., a static or laminar state!, the heat or momen-
tum should be transported only through molecular diffus
whose characteristic length scale~i.e., the mean free path! is
very much smaller than the system size~d!. Thus, the mo-
lecular diffusion in the static~or laminar! state is quite inef-
ficient for the transport of heat or momentum. This static~or
laminar! state is, however, unstable to small fluctuatio
when Ra@Ra* or Re@Re*, and the fluctuations will develop
into a train of turbulent eddies@36#. The development of
these eddies will continue until they encounter the bou
aries of the fluid system@Figs. 3~a! and 3~b!#. At this state,
heat or momentum is transported most efficiently by
macroscopic eddies. We have seen in this paper that
transport is not only enhanced by the turbulent eddies,
also tends to maximize the rate of entropy increase in
surrounding system. This result suggests that the turbu
fluid system tends to be in a steady state with a distribut
of eddies that produce the maximum rate of entropy incre
in the surrounding system. In this sense, the initiation a
evolution of turbulence seem to be regulated by a unive
requirement of entropy increase in the nonequilibrium s
roundings.
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APPENDIX

The time rate of change of entropy of an open fluid s
tem is given by the following time derivative:

Ṡsys5
d

dt F E rsdVG5E ]~rs!

]t
dV1E rsvdA, ~A1!

wherer is the density of the fluid,s is the entropy per unit
mass,v is the normal component of fluid velocity at th
surface~positive outward!, V is the volume of the system
andA is the surface bounding the system. The first term
the right-hand side can be expanded and rewritten by u
the equation of continuity@]r/]t52“•(rv)#

]~rs!

]t
5r

]s

]t
1s

]r

]t
5r

]s

]t
2“•~rsv!1rv•“s.
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Substituting this in the volume integral of Eq.~A1!, and
transforming the second term by using Gauss’s theorem
get

Ṡsys5E rF]s

]t
1v•“sGdV. ~A2!

The expression in the square brackets is the substantial
derivative of entropy per unit mass of a fluid moving abo
in space (ds/dt). This rate of entropy increase can be e
pressed by using the thermodynamical relation@ds[dQ/T
5$du1pd(1/r)%/T# as

ds

dt
5

1

T S du

dt
1p

d~1/r!

dt D , ~A3!

where u is the internal energy per unit mass, andp is the
pressure. Substituting this in Eq.~A2!, and transforming the
substantial time derivatives to spatial time derivativ
(du/dt5]u/]t1v•“u), we get

Ṡsys5E 1

T Fr ]u

]t
1rv•“u1p“•vGdV. ~A4!

Here the continuity relation@d(1/r)/dt52(1/r2)dr/dt
5(1/r)“•v# has been used. The first and second terms
the square brackets can be rewritten using the following
lation:

r
]u

]t
1rv•“u5

]~ru!

]t
1“•~ruv!.

By substituting it in Eq.~A4!, we get

Ṡsys5E 1

T F]~rcT!

]t
1“•~rcTv!1p“•vGdV. ~A5!

Here the relationu5cT has been used, wherec is the spe-
cific heat at constant volume. This equation is valid with
the limits of an approximation that the temperature and
velocity are constant in the small volume elementdV ~cf.
@22#, Sec. 49!.

Entropy of the surrounding system will increase by h
flux from the fluid system through the boundary. Followin
the definition of Clausius, the rate of entropy increase of
surrounding system is given by a surface integral of the h
flux due to turbulence divided by the temperature
02630
e

e
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-

s
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-

e

t

e
at

Ṡsurr5E F

T
dA, ~A6!

whereF is the surface heat flux defined as positive outwa
dA is a small surface element, and the integral is taken o
the whole boundary surface.

The rate of entropy increase due to turbulence for
whole system is given by the sum of Eqs.~A5! and ~A6!

Ṡturb5E 1

T F]~rcT!

]t
1“•~rcTv!1p“•vGdV1E F

T
dA.

~A7!

The first term represents the entropy increase rate of the o
fluid system, and the second term represents that of the
rounding system.

The general expression Eq.~A7! can be rewritten in a
different form. Because of the law of conservation of ener
the terms in the square brackets on the right-hand side of
~A7! are related to the convergence of heat flux and the
of heating by viscous dissipation~cf. @25#, Sec. 7! as

]~rcT!

]t
1“•~rcTv!1p“•v52“•F1F, ~A8!

whereF is the diabatic heat flux density due to turbulen
and F is the dissipation function, representing the rate
dissipation of kinetic energy by viscosity per unit volume
a fluid. The heat fluxF includes all diabatic heat transpo
processes associated with turbulence, e.g., thermal con
tion, latent heat transport by phase change, etc., but doe
include the radiative transport process. The surface inte
on the right-hand side of Eq.~A7! can be transformed to a
volume integral by using Gauss’s theorem

E F

T
dA5E “•F

T
dV1E F•“S 1

TDdV. ~A9!

By substituting Eqs.~A8! and ~A9! in Eq. ~A7!, we get

Ṡturb5E F•“S 1

TDdV1E F

T
dV. ~A10!

The first term is the entropy increase rate by thermal di
pation, and the second term is that by viscous dissipatio
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